Matrix Transformations using Eigenvectors

Matrix Transformations Using Eigenvectors

Larry Caretto Mechanical Engineering 501A Seminar in Engineering Analysis September 18, 2017

California State University Northridge

 We now show that AX = ΛD where Λ is a diagonal matrix of eigenvalues

California State University Northridge

Orthogonal Matrices

- An orthogonal matrix has mutually orthogonal columns, a_(i)
- Write matrix as $[\mathbf{a}_{(1)} \ \mathbf{a}_{(2)} \ \mathbf{a}_{(3)} \ \dots \ \mathbf{a}_{(n)}]$
- $(\mathbf{a}_{(i)}, \mathbf{a}_{(j)}) = \mathbf{a}^{\mathsf{T}}_{(i)}\mathbf{a}_{(j)} = \Sigma \mathbf{a}_{ki}\mathbf{a}_{kj} = \delta_{ij}$
- Summation formula is equivalent to matrix multiplication of A^TA = I
- Thus, $\mathbf{A}^{\mathsf{T}} = \mathbf{A}^{-1}$ for orthogonal matrices
- Both rows and columns are orthogonal

13

California State University Northridge

Hermitian/Symmetric Matrices

- Symmetric matrix: **A** = **A**^T
- Hermitian matrix: $\mathbf{A}^{H} = \mathbf{A}^{\dagger} = (\mathbf{A}^{*})^{T} = \mathbf{A}$
- A real symmetric matrix is a Hermitian matrix (also called self-adjoint)
- For an n x n Hermitian matrix
 - Eigenvalues are real
 - Eigenvectors form a linearly independent, orthogonal basis set in n dimensions
 - May have complex eigenvectors for complex A

California State University Northridge

California State University Northridge

Hermitian Example Continued				
 Show eigenvectors are orthonormal 				
	0.494321	0.270183	-0.826225	
X =	0.606278	-0.788297	0.104950	
	0.622955	0.552801	0.553478	
$(\mathbf{x}_{(1)}, \mathbf{x}_{(2)}) = \mathbf{x}_{(1)}^T \mathbf{x}_{(2)} = (0.494321)(0.270183) +$				
(0.606278)(-0.788297) + (0.622955)(0.552801) = 0				
• Can show $(\mathbf{x}_{(i)}, \mathbf{x}_{(j)}) = \delta_{ij}$				
California State University Northridge				19

Another Hermitian Example II				
• Now that eigenvalues are known find eigen- $\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ vectors from $[\mathbf{A} - \mathbf{I}\lambda] = 0$				
$\begin{bmatrix} 1 - \lambda_k & 0 & 1 \\ 0 & 1 - \lambda_k & 0 \\ 1 & 0 & 1 - \lambda_k \end{bmatrix} \begin{bmatrix} x_{(k)1} \\ x_{(k)2} \\ x_{(k)3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$				
• Get eigenvector components for each of the eigenvalues Northridge For $\lambda_1 = 2, 1 - \lambda_1 = -1$ ²²				

Gerschgorin Inclusion Theorem

• Provides a set of (usually) overlapping disks on the complex plane that contain the eigenvalues

$$\left|\lambda - a_{jj}\right| \le \sum_{k=1}^{j-1} \left|a_{jk}\right| + \sum_{k=j+1}^{n} \left|a_{jk}\right| = \sum_{k=1, k \neq j}^{n} \left|a_{jk}\right|$$

• Apply to each diagonal element to get a disk with center (a_{ij}) and a radius $|\lambda - a_{ij}|$ in complex plane by row sum

37

California State University Northridge

