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Outline

• Review last lecture

• Transformations with a matrix of 
eigenvectors:  = X-1AX

• Hermitian and orthogonal matrices

• Quadratic forms

• Numerical methods for eigenvalues and 
eigenvectors
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Review Eigens

• Basic definition (A n x n): Ax = x

• Det [A – I] = 0 gives nth order equation 
for eigenvalues
– n eigenvalues (may not be distinct)
– solve [A – I]x = 0 for n components of 

each of n eigenvectors 
– eigenvectors undetermined to within a 

multiplicative constant
– eigenvectors may or may not be linearly 

independent
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Transform A into a Diagonal

• If the n eigenvectors of A are linearly 
independent we can define an invertible 
matrix, X, whose columns are eigen-
vectors of A:  X = [x(1)  x(2)  x(3) ….. x(n)]

• AX = [Ax(1)  Ax(2)  Ax(3) ….. Ax(n)]

• AX = [1x(1)  2x(2)  3x(3) ….. nx(n)]

• We now show that AX = D where  is 
a diagonal matrix of eigenvalues
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Matrix Product X
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• Usual X matrix component is, xrow,column

• This X component notation is x(vector)row

• Usual matrix multiplication formula applies
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Matrix Product X Continued

  AXxxxx

XΛ
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• AX = [1x(1)  2x(2)  3x(3) ….. nx(n)] from 
previous slide.  We now see that AX = X
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A Transformed

• We assumed that X has an inverse; we 
can pre-multiply AX = X by this inverse 
to get
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Transform Example for 2 x 2

• Last class example: eigenvectors for 2 x 
2 matrix A, with 1 = 2 and 2 = 1
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Check Inverse, Comupte AX
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Transform Example Result

• This example produces the expected 
result: X-1AX is a diagonal matrix of 
eigenvalues (regardless of  and )
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Another X-1AX Example
• Last class 3 x 3 example had A matrix with 

eigenvalues 1 = -2, 2 = -2, 3 = 6 and 
eigenvectors shown below 
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Another X-1AX Example II
• Using matrices X-1 and A from the previous 

slide we have 
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11AX
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Orthogonal Matrices

• An orthogonal matrix has mutually 
orthogonal columns, a(j)

• Write matrix as [a(1) a(2) a(3) …  a(n)]   

• (a(i), a(j)) = aT
(i)a(j) = akiakj = ij

• Summation formula is equivalent to 
matrix multiplication of ATA = I

• Thus, AT = A-1 for orthogonal matrices

• Both rows and columns are orthogonal
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More on Orthogonal Matrices

• A vector transform with an orthogonal 
matrix preserves the vector length

• For y = Ax, with A orthogonal, ||y||2 = 
yTy = (Ax)TAx = xTATAx

• Orthogonal matrix: AT = A-1 so ATA = I

• So, ||y||2 = xTATAx = xTIx = xTx = ||x||2

• Conclusion: when y = Ax, with A
orthogonal, ||y||2 = ||x||2
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Hermitian/Symmetric Matrices

• Symmetric matrix: A = AT

• Hermitian matrix: AH = A† = (A*)T = A

• A real symmetric matrix is a Hermitian 
matrix (also called self-adjoint)

• For an n x n Hermitian matrix
– Eigenvalues are real

– Eigenvectors form a linearly independent, 
orthogonal basis set in n dimensions

• May have complex eigenvectors for complex A
16

Unitary Matrix

• Analog of an orthogonal matrix for 
complex-values matrices

• For a unitary matrix, U, UH = U-1

– I. e. for a unitary matrix we get the inverse 
by taking the transpose and setting all 
values of i to –i

• Eigenvectors of a Hermitian matrix, A
– Form an orthogonal matrix for real-valued A 

and a unitary matrix if A has complex values

17

Hermitian Eigenvectors

• Recall X matrix whose columns are 
eigenvectors giving  = X-1AX

• Requires X to have inverse
• This is guaranteed for a Hermitian A
• Furthermore, since X columns are 

orthogonal eigenvectors, X-1 = XH, 
which is the same as XT for real A
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Hermitian Example

• Solve Det[A – I] = 0 for eigenvalues

• 1 = 4.7131967, 2 = -2.789263462, 
and 3 = 0.076066756 

• Solve (A – Ik)x(k) = 0 for unit 
eigenvectors and construct X matrix
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Hermitian Example Continued

• Show eigenvectors are orthonormal
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• Can show (x(i) , x(j)) = ij
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Hermitian Example Concluded

• Since columns of X are orthogonal, X is 
an orthogonal matrix: X-1 = XT
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• Can verify this by taking inverse

• Can also show that X-1AX = diag[1, 2, 
3]
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Another Hermitian Example

• Find X such that X-1AX = for A = AH
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Another Hermitian Example II

• Now that eigenvalues 
are known find eigen-
vectors from [A – I] = 0
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• Get eigenvector components for each 
of the eigenvalues
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For 1 = 2, 1 – 1 = -1
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Another Hermitian Example III

• Apply 
general 
equation 
to 1 = 2
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For 1 = 2, 1 – 1 = -1

New row 3 = Row 1 
+ Old Row 3 

• Solution is x(1)3 = a, x(1)2 = 0, and x(1)1 =     
a, for any value of a

24

Another Hermitian Example IV

• Apply 
general 
equation 
to 2 = 1
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• Solution is x(2)3 = 0, x(2)2 = b, and x(2)1 = 
0, for any value of b
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Another Hermitian Example V

• Apply 
general 
equation 
to 3 = 0
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• Solution is x(3)3 = c, x(3)2 = 0, and x(3)1 =  
–c, for any value of c
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Another Hermitian Example VI

• General 
result
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• Set a = b 
= c = 1
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• Normalized 

vectors
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Another Hermitian Example VII
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• Inner (dot) 
products 
of unlike 
vectors 
are zero 
for 
orthogonal 
set
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Another Hermitian Example VIII
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• Form X
matrix from 
individual 
eigenvectors

• X-1 should 
equal XT for 
orthogonal 
eigenvector 
matrix

Another Hermitian Example IX

• Check to see if X-1 = XT(true if XXT = I
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Another Hermitian Example X
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Details 
on next 

slide
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Another Hermitian Example XI
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Quadratic Form

• Q = xTAx, with symmetric A

• Q =  xHAx with Hermitian A

• Both the same if A has all real values
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Quadratic Form II

 
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Quadratic Form III

• Positive definite if xHAx  0 for any x
• Positive semidefinite if xHAx > 0 for any x
• Hermitian matrix is positive definite 

(semidefinite) if all its eigenvalues are 
positive (or zero)
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Similarity Transformations

• Transformations important in matrix 
operations and numerical analysis

• In the similarity transform B = P-1AP, B
will have the same eigenvalues as A

• Bx = x => P-1APx =  x

• Premultiply by P to get PP-1APx = Px

• PP-1APx = IAPx = APx = Px = Px

• A eigenvectors are Px
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Numerical Eigenvalue/vector

• Based on similarity transformations

• Householder/Givens transformations 
convert matrix to diagonal form

• Use library programs such as LINPAK, 
Visual Numerics IMSL library or 
MATLAB for calculations

• Can get range for eigenvalues by 
inclusion theorems



Matrix Transformations using 
Eigenvectors

September 18, 2017

ME 501A Seminar in Engineering 
Analysis Page 7

37

Gerschgorin Inclusion Theorem

• Provides a set of (usually) overlapping 
disks on the complex plane that contain 
the eigenvalues

 
 
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n

jk

n

jkk
jkjk

j

k
jkjj aaaa

1 ,1

1

1



• Apply to each diagonal element to get a 
disk with center (ajj) and a radius | – ajj| 
in complex plane by row sum
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Gerschgorin Disk Example

• All eigenvalues lie in disks constructed 
from equation on previous chart

• Hermitian matrix eigenvalues must lie 
along real axis


